Home
Quickstart Guide
Introduction RIO Academic RIO Application examples Your first RT app Your first FPGA app
Real-Time
Basic procedures System admin File system I/O monitor System controller architecture Timed loops Inter-process communication RT/Host communication RT/FPGA communication FPGA personalities Interrupts Datalogger (file I/O)
FPGA
Design flow Simulation Inter-process communication RT/host communication Derived clock domain IP blocks FPGA personality
Networking
Get connected Email Web services UDP TCP IP addresses
Site Map
Guides Code examples Procedures Tags LabVIEW block diagram elements Targets Communications All pages
Glossary How to use About
RIO Developer Essentials Guide for Academia

"Inter-target communication" tag

A high-level overview of the Academic RIO Device architecture and features.

Develop an FPGA VI
FPGA guide

Develop your own FPGA-targeted VI to take advantage of the unique capabilities of the FPGA target such as high-speed I/O, precision I/O timing, parallel processing, and functionality not offered by the RT processor and Academic RIO Device Toolkit default personality; you can also augment the default personality with your needed capability.
Transfer data, commands, and status between the RT target and a host system.
The RT VI operates (writes) the front-panel controls of the FPGA VI and reads its indicators.
A network-published shared variable (NPSV) behaves like a global variable that links process loops residing in two or more network-connected targets.
Use the NPSV programmatic API (application programmer's interface) VIs as an alternative method to a shared variable node.
Send command and status messages through a low-latency lossless network-based data communication channel between the RT target and PC host system.
Efficiently transfer blocks of data between the RT and PC by network streams.
Efficiently transfer blocks of data between the RT and FPGA by direct memory access (DMA) first-in first-out (FIFO) buffers.
Transfer data, commands, and status between the FPGA target and a host system (RT or PC).
The PC VI operates (writes) the front-panel controls of the FPGA VI and reads its indicators.
Efficiently transfer blocks of data between the PC and FPGA by direct memory access (DMA) first-in first-out (FIFO) buffers.