Home
Quickstart Guide
Introduction RIO Academic RIO Application examples Your first RT app Your first FPGA app
Real-Time
Basic procedures System admin File system I/O monitor System controller architecture Timed loops Inter-process communication RT/Host communication RT/FPGA communication FPGA personalities Interrupts Datalogger (file I/O)
FPGA
Design flow Simulation Inter-process communication RT/host communication Derived clock domain IP blocks FPGA personality
Networking
Get connected Email Web services UDP TCP IP addresses
Site Map
Guides Code examples Procedures Tags LabVIEW block diagram elements Targets Communications All pages
Glossary How to use About
RIO Developer Essentials Guide for Academia

"IP address" tag

Synchronize the system clock time based on querying the Internet Time Service (ITS) maintained NIST (National Institute of Standards and Technology): Open a TCP/IP connection to the "Daytime Protocol" port 13, read the 51-character string, parse the string for time and date information, validate the result (look for a server health indicator and a "magic string"), and then adjust the system time.

Show available IP addresses
RT code PC code

Display all of the network IP (Internet Protocol) addresses at which the RT target or PC host can be reached.
Determine whether or not Internet access is available by attempting an HTTP connection to the "Microsoft Network Connectivity Status Indicator" (NCSI) web service.
Determine whether or not Internet access is available by attempting a TCP connection to the "Microsoft Network Connectivity Status Indicator" (NCSI) web service.
Send TCP/IP messages to a destination IP address and port number, listen for incoming TCP/IP messages on a user-defined port, and echo received messages back to the source. Combine the sender and receiver into a single "TCP ping" application to test the communication channel between two network hosts, and illustrate the notifier method to stop parallel loops with one "stop" button.

TCP client-server
RT code PC code

Create a server on the Academic RIO Device that listens for TCP/IP network connection requests from a client running on the PC host, accepts client information including the desired state of the four onboard LEDs, sets the LEDs accordingly, and returns the state of the onboard 3-axis accelerometer and pushbutton.
Send UDP messages to a destination IP address and port number, listen for incoming UDP messages on a user-defined port, and echo received messages back to the source. Combine the sender and receiver into a single "UDP ping" application to test the communication channel between two network hosts, and illustrate the notifier method to stop parallel loops with one "stop" button.

UDP client-server
RT code PC code

Create a server on the Academic RIO Device that listens for UDP datagram messages from a client running on the PC host, accepts client information including the desired state of the four onboard LEDs, sets the LEDs accordingly, and returns the state of the onboard 3-axis accelerometer and pushbutton.
Form a query string as a URL, retrieve the JSON string served by the Web service, and parse the JSON string to extract useful information.
Host a web service on the Academic RIO Device to serve the states of onboard sensors (pushbutton and accelerometer) and system information (date, time, host name, and IP address), and to control the onboard LEDs based on a user-selected LED hex code.