Home
Quickstart Guide
Introduction RIO Academic RIO Application examples Your first RT app Your first FPGA app
Real-Time
Basic procedures System admin File system I/O monitor System controller architecture Timed loops Inter-process communication RT/Host communication RT/FPGA communication FPGA personalities Interrupts Datalogger (file I/O)
FPGA
Design flow Simulation Inter-process communication RT/host communication Derived clock domain IP blocks FPGA personality
Networking
Get connected Email Web services UDP TCP IP addresses
Site Map
Guides Code examples Procedures Tags LabVIEW block diagram elements Targets Communications All pages
Glossary How to use About
RIO Developer Essentials Guide for Academia

"Headless" tag

Follow along with this step-by-step tutorial to make a "hello, world!"-like application to experience the advantages of multiple linked VIs running simultaneously on the real-time (RT) target and desktop computer: (1) "RT Main" runs as the RT target start-up VI, blinks the onboard LEDs, and reads the onboard button; these onboard devices physically connect to the FPGA I/O pins which are accessed with the Academic RIO Device Toolkit Express VIs and default FPGA personality, and (2) "PC Main" VI runs on the desktop computer as a user-friendly human-machine interface (HMI) for remote command and control of "RT Main" through the network via shared variables hosted on the RT target.
Follow along with this step-by-step tutorial to make a "hello, world!"-like application to experience the advantages of multiple linked VIs running simultaneously on the FPGA target, real-time (RT) target, and desktop computer: (1) "FPGA Main" VI blinks the onboard LEDs and reads the onboard button; these onboard devices physically connect to the FPGA I/O pins, (2) "FPGA testbench" VI runs on the desktop computer for interactive development and debugging of "FPGA Main" in simulation mode prior to compiling to a bitstream file, (3) "RT Main" VI runs as the RT target start-up VI; it runs "FPGA Main", interacts with its front-panel controls/indicators, and communicates with an external desktop computer via network-published shared variables, and (4) "PC Main" VI runs on the desktop computer as a user-friendly human-machine interface (HMI) for remote command and control of "FPGA Main" through the network.
Monitor process variables and sensor measurements, timestamp them, and log them to a file, and then remote access the datalog file through the network with WebDAV, web browser, or VI running on a PC host.
A single-process shared variable (SPSV) behaves like a global variable that links deterministic and non-deterministic process loops, effectively shielding the deterministic loop from elements that contribute jitter.
A network-published shared variable (NPSV) behaves like a global variable that links process loops residing in two or more network-connected targets.
Use the NPSV programmatic API (application programmer's interface) VIs as an alternative method to a shared variable node.
Efficiently transfer blocks of data between the RT and PC by network streams.