Home
Quickstart Guide
Introduction RIO Academic RIO Application examples Your first RT app Your first FPGA app
Real-Time
Basic procedures System admin File system I/O monitor System controller architecture Timed loops Inter-process communication RT/Host communication RT/FPGA communication FPGA personalities Interrupts Datalogger (file I/O)
FPGA
Design flow Simulation Inter-process communication RT/host communication Derived clock domain IP blocks FPGA personality
Networking
Get connected Email Web services UDP TCP IP addresses
Site Map
Guides Code examples Procedures Tags LabVIEW block diagram elements Targets Communications All pages
Glossary How to use About
RIO Developer Essentials Guide for Academia

"Format Into String" element

Format Into String

Send command and status messages through a low-latency lossless network-based data communication channel between the RT target and PC host system.
Create a responsive user interface based on two loops operating in parallel: the "producer" loop event structure responds immediately to user interactions such as button clicks and mouse movements that send commands through a queue to the "consumer" loop which performs the required tasks. Separating the state machine into two loops allows the user interface to remain responsive should a consumer task require an unusual amount of time or must wait for a shared resource to become available.
Send TCP/IP messages to a destination IP address and port number, listen for incoming TCP/IP messages on a user-defined port, and echo received messages back to the source. Combine the sender and receiver into a single "TCP ping" application to test the communication channel between two network hosts, and illustrate the notifier method to stop parallel loops with one "stop" button.
Send UDP messages to a destination IP address and port number, listen for incoming UDP messages on a user-defined port, and echo received messages back to the source. Combine the sender and receiver into a single "UDP ping" application to test the communication channel between two network hosts, and illustrate the notifier method to stop parallel loops with one "stop" button.
Form a query string as a URL, retrieve the JSON string served by the Web service, and parse the JSON string to extract useful information.
Host a web service on the Academic RIO Device to serve the states of onboard sensors (pushbutton and accelerometer) and system information (date, time, host name, and IP address), and to control the onboard LEDs based on a user-selected LED hex code.