System Controller Application Example
A complete RT system controller for the “Home Security System”
Overview
This application example illustrates a complete RT system controller based on the Queued Message Handler (QMH) design pattern with multiple parallel task loops implementing behaviors with queued state machines (QSMs), various inter-process communication techniques (queues and local variables), and inter-target communication techniques (network-published shared variables (NPSVs) and network streams). The PC host human-machine interface (HMI) can remotely connect to the system through the network, monitor the status of the security system, and control it remotely.
This document details functionality of these task loops, each implemented by its own QSM:
System Manager:
· Maintains high-level operating mode of the overall system
· Issues command messages to the task loops
· Receives alert messages from the task loops
· NOTE: Task loops can directly message each other to reduce complexity of the System Manager
Code Validator:
· Accepts keypad input
· Directly messages the Buzzer on each keypress
· Validates the input sequence against the stored arm/disarm code
· Ensures that the complete three-digit sequence is entered within a limited period of time
· Issues alert to the System Manager when a valid code has been entered on the keypad
Timer:
· Countdown timer for pre-arm and pre-alarm modes
· Issues an alert to the System Manager when the timer expires
Sensors:
· Polls the door and motion sensors when enabled
· Issues an alert to the System Manager when the sensor changes to an active state
LED:
· Status indicator for user interface
· Indicates whether the system is “on” (armed) or “off” (disarmed)
· Blinks to indicate pre-arm step
Buzzer:
· Controls the piezo-electric buzzer on the user interface
· Provides various feedback sounds such as keypress clicks, acknowledgements, and errors
· Presently implemented by a visual indicator on front panel
The remaining process loops (Command Parser and Error Handler) are described in the page “Queued message handler with multiple process loops”, and the page “Queued state machine” describes the LabVIEW implementation of QSMs in full detail.
Each QSM task implements the following generic behavior:
1. Wait for a message to become available in its queue – the task loop blocks (waits) indefinitely and takes no action until a message becomes available; any task can message any other task in the system, including itself
2. Dequeue the message when it becomes available
3. Read input device(s) and write the corresponding data highway variables (as needed)
4. Interpret the message as the new state of the QSM and take any or all of the following actions as needed:
a. Update data highway variables
b. Enqueue messages to other tasks
c. Self-enqueue a message into the QSM itself
5. Write output device(s) with the corresponding data highway variables (as needed)
6. Return to Step 1
NOTE: A QSM that regenerates a state, that is, the state self-enqueues the same state, must include a “Wait” function (time delay) to pace the task loop at an appropriate rate. Without the wait function the loop will run as fast as possible, needlessly burdening the CPU. Use regenerative states only when the QSM must sustain an activity over time such as polling an input device or incrementing a timer count. Normally the QSM should wait for a message to arrive in its queue before acting, because such event-driven behavior minimizes CPU load.
The following tables list each QSM state, updates to variables stored in the data highway of the QSM, messages enqueued to other task QSMs, and self-enqueued states, i.e., a message generated within the QSM to its own state queue. Each QSM contains three standard states: Initialize, Shutdown, and Error; these can be modified according to the needs of the application.
Notational conventions:
· Standard states (e.g., Initialize, Shutdown, Error) written with capitalized first letter
· Application-specific states written with lower case first letter
· States written in boldface font
· Data highway variables written in typewriter font
· Data highway variables that connect to input devices written as variableI. These variables copy the input device value each time a new message is dequeued.
· Data highway variables that connect to output devices are written as variableO

System Manager
· Maintains the high-level operating mode of the overall system
· Issues commands to the task loops which respond with alert messages
	Data Highway
	Message(s) Enqueued
	Self-Enqueued State

	Initialize – Initialize the entire system (standard QSM state with application-specific modifications)

	modeO “READY”
doorI F
motionI F
alarmO F
	Timer/Initialize
Sensors/Initialize
Buzzer/Initialize
CodeValidator/Initialize
LED/Initialize
	ready

	Shutdown – Enable loop stop (standard QSM state with application-specific modifications)

	
	
	

	Error – Handle locally-generated error (standard QSM state with application-specific modifications)

	
	
	

	ready – System is ready for valid code entry on keypad; enable door and motion sensors to send alerts

	modeO “READY”
	Sensors/monitor
	

	pre-arm – Prepare to arm the system allowing time for homeowner to leave the house

	modeO “PRE-ARM”
	Timer/Initialize
Timer/run
LED/mode:blink
	

	armed – System is armed and monitoring all sensors

	modeO “ARMED”
	LED/mode:steady
	

	pre-alarm – Sound warning tone, and allow time for homeowner to disarm the system

	modeO “PRE-ALARM”
	LED/mode:steady
Buzzer/beep:warning
Timer/Initialize
Timer/run
	

	alarm – Activate the alarm

	modeO “ALARM”
alarmO T
	LED/mode:steady
	

	alert:valid – Alert message from “Code Validator” task: valid code entered on keypad

	Case 1: modeO is “READY” and doorI is F and motionI is F
	Buzzer/beep:ack
	pre-arm

	Case 2: modeO is “READY” and either doorI is T or motionI is T or both are T
	Buzzer/beep:error
	Initialize

	Case 3: modeO is “ALARM”, “ARMED”, “PRE-ALARM”, or “PRE-ARMED”
	Buzzer/beep:ack
Buzzer/beep:cancel
	Initialize

	alert:dooropened – Alert message from “Sensors” task: door just opened

	Case 1: modeO is “READY”
	Buzzer/beep:chime
	

	Case 2: modeO is “ARMED”
	
	pre-alarm

	Case 3: modeO is “ALARM”, “PRE-ALARM”, or “PRE-ARMED”
	
	

	alert:motion – Alert message from “Sensors” task: motion just detected

	Case 1: modeO is “ARMED”
	
	alarm

	Case 2: modeO is “ALARM”, “PRE-ALARM”, “PRE-ARMED”, or “READY”
	
	

	alert:timedout – Alert message from “Timer” task: time interval expired

	Case 1: modeO is “PRE-ARM”
	[bookmark: _GoBack]
	armed

	Case 2: modeO is “PRE-ALARM”
	
	alarm

	Case 3: modeO is “ALARM”, “ARMED”, or “READY”
	
	

Code Validator
· Accepts keypad input
· Validates the input sequence against the stored arm/disarm code
· Ensures that complete three-digit sequence is entered within a limited period of time
· Issues alert to System Manager when a valid code has been entered on the keypad
	Data Highway
	Message(s) Enqueued
	Self-Enqueued State

	Initialize – Initialize the entire system (standard QSM state with application-specific modifications)

	timer_initial_value 30
time_remaining 30
stored_code 123
entered_code 0
keypad_digitI -1
digit_count 0
	
	get code

	Shutdown – Enable loop stop (standard QSM state with application-specific modifications)

	
	
	

	Error – Handle locally-generated error (standard QSM state with application-specific modifications)

	
	
	

	get code – Assemble a three-digit code entered from the keypad within a time limit measured by a count-down timer

	keypad_digitI is zero or greater (key pressed):
time_remaining timer_initial_value ;
entered_code 10 entered_code + keypad_digitI ;
digit_count digit_count + 1 ;

otherwise:
keypad_digitI is negative (no key pressed) and digit_count is greater than zero:
time_remaining time_remaining – 1 ;

	Buzzer/beep:keypress

SysMgr/alert:valid if entered_code matches stored_code
	Initialize if time_remaining is negative or digit_count is three or more, otherwise
get code (regenerative)

Timer
· Countdown timer for pre-arm and pre-alarm modes
· Issues an alert when the timer expires
	Data Highway
	Message(s) Enqueued
	Self-Enqueued State

	Initialize – Initialize the entire system (standard QSM state with application-specific modifications)

	time_remainingO 30
	
	

	Shutdown – Enable loop stop (standard QSM state with application-specific modifications)

	
	
	

	Error – Handle locally-generated error (standard QSM state with application-specific modifications)

	
	
	

	run – Decrement the timer and check for time out

	Case 1: time_remainingO is zero or less
	SysMgr/alert:timedout
	Initialize

	Case 2: time_remainingO is greater than zero:
time_remainingO time_remainingO 1
	
	run (regenerative)

Sensors
· Polls the door and motion sensors when enabled
· Issues an alert when the sensor changes to an active state
	Data Highway
	Message(s) Enqueued
	Self-Enqueued State

	Initialize – Initialize the entire system (standard QSM state with application-specific modifications)

	doorI F
door_previous F
motionI F
motion_previous F
	
	

	Shutdown – Enable loop stop (standard QSM state with application-specific modifications)

	
	
	

	Error – Handle locally-generated error (standard QSM state with application-specific modifications)

	
	
	

	monitor – Monitor the sensors and generate an alert on low-to-high change

	door_previous doorI

motion_previous motionI
	SysMgr/alert:dooropened if doorI is T and door_previous is F

SysMgr/alert:motion if motionI is T and motion_previous is F
	monitor (regenerative)

LED
· Status indicator for user interface
· Indicates whether the system is “on” (armed) or “off” (disarmed)
· Blinks to indicate pre-arm step
	Data Highway
	Message(s) Enqueued
	Self-Enqueued State

	Initialize – Initialize the entire system (standard QSM state with application-specific modifications)

	mode “off”
LED F
	
	

	Shutdown – Enable loop stop (standard QSM state with application-specific modifications)

	
	
	

	Error – Handle locally-generated error (standard QSM state with application-specific modifications)

	
	
	

	run – Create the LED blinking pattern based on selected mode

	Case 1: mode is “steady”:
LED T
	
	

	Case 2: mode is “off”:
LED F
	
	

	Case 3: mode is “blink”:
LED not LED
	
	run (regenerative)

	mode:pattern – Select an LED pattern

	mode pattern
	
	run

Buzzer
· Controls the piezo-electric buzzer on the user interface
· Provides various feedback sounds such as keypress clicks, acknowledgements, and errors
· Presently implemented by a visual indicator on front panel
· NOTE: loop requires a “Wait” function to determine how long front-panel indicator remains active
	Data Highway
	Message(s) Enqueued
	Self-Enqueued State

	Initialize – Initialize the entire system (standard QSM state with application-specific modifications)

	keypress F
error F
ack F
cancel F
door_chime F
warning F
	
	

	Shutdown – Enable loop stop (standard QSM state with application-specific modifications)

	
	
	

	Error – Handle locally-generated error (standard QSM state with application-specific modifications)

	
	
	

	beep:keypress – Illuminate the “keypress” indicator

	keypress F
	
	Initialize

	beep:ack – Illuminate the “valid code acknowledged” indicator

	ack T
	
	Initialize

	beep:cancel – Illuminate the “operation cancelled” indicator

	cancel T
	
	Initialize

	beep:error – Illuminate the “error” indicator

	error T
	
	Initialize

	beep:chime – Illuminate the “door chime” indicator

	chime T
	
	Initialize

	beep:chime – Illuminate the “pre-alarm warning” indicator

	warning T
	
	Initialize

Page 4 of 9
